sec²x的导数为 2sec²x tanx。具体推导过程如下:
设u=secx
根据复合函数求导法则,先对sec²x进行变量替换:
$$
\frac{d}{dx}(\sec^2x) = \frac{d}{dx}(u^2)
$$
应用链式法则
根据链式法则,导数为:
$$
\frac{d}{dx}(u^2) = 2u \cdot \frac{du}{dx}
$$
其中,$\frac{du}{dx}$是secx的导数。
求secx的导数
secx的导数为:
$$
\frac{d}{dx}(\sec x) = \sec x \tan x
$$
代入并化简
将$\frac{du}{dx}$代入链式法则结果:
$$
2u \cdot \sec x \tan x = 2\sec x \cdot \sec x \tan x = 2\sec^2x \tan x
$$
综上,sec²x的导数为 2sec²x tanx。
声明:
本站内容均来自网络,如有侵权,请联系我们。